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In this supplementary material of [1] we provide additional derivations. In section 1 we derive the expression of the latent
posteriors, given in eq. (16) in [1]. Section 2 gives a derivation of the loss function stated in eq. (18) in [1]. In section 3 we
derive the update of the feature component weights, given in eq. (19) in [1]. Finally, additional analysis of parameter settings
is given in section 4.

1. Derivation of the Latent Posteriors %(?121

Here, we derive the expression of the latent posteriors agy,zl given in eq. (16) in [1]. By using the factorization (10) in [1],
along with the definitions of the individual factors (see (1), (11) and (12) in [1]) we obtain the following expression of the
complete-data likelihood of the observation (x;;, y;;) (also given in (15) in [1] for k # 0),
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The observed data-likelihood for (x;;, ;) is obtained by marginalizing over the latent variables (C;;, Z;;),

p(xij,1i5|0) = p(xij, yij, Cij = 1, Zij = k[©)

M= 1
M-

M=

TPkt Br (i )N (6i(Xi); ty., i) + moldy (@i (xi5) U (y). (2)

>
Il

1

~

1

The set U C R? is selected to contain all observed points. The last term in (2), which corresponds to the uniform component,

is therefore a constant )\, given by
o
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Here, m denotes the reference measure of the probability densities for the respective spaces (i.e. the Lebesgue measure in the
spatial case). The latent posteriors are given by the conditional probabilities,
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Here, ©(") denotes the model parameter estimate obtained in EM-iteration n. By using (1), (2) and (3) in (4) we obtain,
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These are the latent posteriors ag;l,z , obtained in EM-iteration n, also stated in eq. (16) in [1].



2. Derivation of the Loss g(©; 0™)

In this section, we derive the loss g(©; 9(”)) (eq. (18) in [1]) that is used in the M-step of the EM procedure. In the
M-step, the aim is to maximize the expected complete-data log likelihood Q(©; ©(™). For the proposed model, this is given

by eq. (17) in [1],
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By using the formula (1) for the complete-data likelihood of each observation, we obtain
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Here, )\ is the constant defined in (3). To simplify the expression (7), we omit constant terms. In our case, the terms
log B (y;;) and %logﬂ' do not depend on the model parameters. The last term is also a constant, since 7 is a fix meta
parameter. By omitting these unnecessary terms in (7), we obtain the equivalent loss,
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This loss is then employed in the M-step of our EM procedure.

3. Derivation of the Optimal Feature Component Weights pfg)

Here, we derive the formula, stated in eq. (20) in [ 1], for updating the feature component weights py;. In the M-step of our
EM-procedure, the feature component weights py; are updated by minimizing the loss (8) (i.e. eq. (19) in [1]). Since only the
last term in (8) depends on py;, we obtain the equivalent optimization problem,
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subject to Zpklzl, k=1,....K (9b)

Here, the constraints in (9b) ensure that the feature component weights sum up to one. By introducing Lagrange multipliers

Nk, We obtain
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Differentiation with respect to py; gives,
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The optimum p,(;;) is obtained by setting the partial derivatives (11) to zero,
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The Lagrange multipliers 7y, are computed by summing both sides of (12) over [ and using the constraint (9b),
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In the last equality we have used the definition a Z =1 O‘z j kl (section 4.2 in [1]). By using (13) in (12), we obtain eq.
(20)in [1] as
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4. Parameter variations
Here, we provide further analysis of the parameters used in our approach. We investigate the impact of varying the number
of spatial components K (fig. 1) and outlier ratio parameter 7y (fig. 2). Our results remain stable to parameter perturbations.

Additionally, our method achieves a consistent improvement over JRMPS [2] in both accuracy and robustness, independent
of parameter settings.
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Figure 1. Analysis of the number of spatial components K. We show the average inlier rotation error (left) and failure rate (right) for our
color-based method (red) and the baseline JRMPS (green).
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Figure 2. Analysis of the outlier ratio parameter mo. We show the average inlier rotation error (left) and failure rate (right) for our color-
based method (red) and the baseline JRMPS (green).
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