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In this supplementary material of [1] we provide additional derivations. In section 1 we derive the expression of the latent
posteriors, given in eq. (16) in [1]. Section 2 gives a derivation of the loss function stated in eq. (18) in [1]. In section 3 we
derive the update of the feature component weights, given in eq. (19) in [1]. Finally, additional analysis of parameter settings
is given in section 4.

1. Derivation of the Latent Posteriors α(n)
ijkl

Here, we derive the expression of the latent posteriors α(n)
ijkl given in eq. (16) in [1]. By using the factorization (10) in [1],

along with the definitions of the individual factors (see (1), (11) and (12) in [1]) we obtain the following expression of the
complete-data likelihood of the observation (xij , yij) (also given in (15) in [1] for k 6= 0),

p(xij , yij , Cij = l, Zij = k|Θ) =

πkρklBl(yij)N (φi(xij);µk,Σk) , k 6= 0
π0

L
UU (φi(xij))UΩ(y) , k = 0.

(1)

The observed data-likelihood for (xij , yij) is obtained by marginalizing over the latent variables (Cij , Zij),

p(xij , yij |Θ) =

K∑
k=0

L∑
l=1

p(xij , yij , Cij = l, Zij = k|Θ)

=

K∑
k=1

L∑
l=1

πkρklBl(yij)N (φi(xij);µk,Σk) + π0UU (φi(xij))UΩ(y). (2)

The set U ⊂ R3 is selected to contain all observed points. The last term in (2), which corresponds to the uniform component,
is therefore a constant λ, given by

λ := π0UU (φi(xij))UΩ(y) =
π0

m(U)m(Ω)
. (3)

Here, m denotes the reference measure of the probability densities for the respective spaces (i.e. the Lebesgue measure in the
spatial case). The latent posteriors are given by the conditional probabilities,

α
(n)
ijkl := p(Zij = k,Cij = l|xij , yij ,Θ

(n)) =
p(xij , yij , Cij = l, Zij = k|Θ(n))

p(xij , yij |Θ(n))
. (4)

Here, Θ(n) denotes the model parameter estimate obtained in EM-iteration n. By using (1), (2) and (3) in (4) we obtain,

α
(n)
ijkl =

π
(n)
k ρ

(n)
kl Bl(yij)N

(
φ

(n)
i (xij);µ

(n)
k ,Σ

(n)
k

)
K∑
q=1

L∑
r=1

π
(n)
q ρ

(n)
qr Br(yij)N

(
φ

(n)
i (xij);µ

(n)
q ,Σ

(n)
q

)
+ λ

, k 6= 0. (5)

These are the latent posteriors α(n)
ijkl obtained in EM-iteration n, also stated in eq. (16) in [1].
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2. Derivation of the Loss g(Θ; Θ(n))

In this section, we derive the loss g(Θ; Θ(n)) (eq. (18) in [1]) that is used in the M-step of the EM procedure. In the
M-step, the aim is to maximize the expected complete-data log likelihood Q(Θ; Θ(n)). For the proposed model, this is given
by eq. (17) in [1],

Q(Θ; Θ(n)) = EZ|X ,Θ(n) [log p(X ,Z|Θ)] =
∑
ijkl

α
(n)
ijkl log p(xij , yij , Cij = l, Zij = k|Θ). (6)

By using the formula (1) for the complete-data likelihood of each observation, we obtain

Q(Θ; Θ(n)) =
∑
ijl

K∑
k=1

α
(n)
ijkl

(
log πk + log ρkl + logBl(yij)−

3

2
log π − 1

2
log |Σk| −

1

2
‖Rixij + ti − µk‖2Σ−1

k

)
+
∑
ijl

α
(n)
ij0l log

λ

L
. (7)

Here, λ is the constant defined in (3). To simplify the expression (7), we omit constant terms. In our case, the terms
logBl(yij) and 3

2 log π do not depend on the model parameters. The last term is also a constant, since π0 is a fix meta
parameter. By omitting these unnecessary terms in (7), we obtain the equivalent loss,

g(Θ; Θ(n)) =
∑
ij

K∑
k=1

L∑
l=1

α
(n)
ijkl

(
1

2
log |Σk|+

1

2
‖Rixij + ti − µk‖2Σ−1

k

− log πk − log ρkl

)
. (8)

This loss is then employed in the M-step of our EM procedure.

3. Derivation of the Optimal Feature Component Weights ρ(n)kl

Here, we derive the formula, stated in eq. (20) in [1], for updating the feature component weights ρkl. In the M-step of our
EM-procedure, the feature component weights ρkl are updated by minimizing the loss (8) (i.e. eq. (19) in [1]). Since only the
last term in (8) depends on ρkl, we obtain the equivalent optimization problem,

minimize ε = −
∑
ij

K∑
k=1

L∑
l=1

α
(n)
ijkl log ρkl (9a)

subject to
L∑

l=1

ρkl = 1 , k = 1, . . . ,K (9b)

Here, the constraints in (9b) ensure that the feature component weights sum up to one. By introducing Lagrange multipliers
ηk, we obtain

L = −
∑
ij

K∑
k=1

L∑
l=1

α
(n)
ijkl log ρkl +

K∑
k=1

ηk

(
L∑

l=1

ρkl − 1

)
. (10)

Differentiation with respect to ρkl gives,
∂L
∂ρkl

= − 1

ρkl

∑
ij

α
(n)
ijkl + ηk. (11)

The optimum ρ
(n)
kl is obtained by setting the partial derivatives (11) to zero,

∂L
∂ρkl

= 0 ⇐⇒

ρ
(n)
kl =

1

ηk

∑
ij

α
(n)
ijkl (12)



The Lagrange multipliers ηk are computed by summing both sides of (12) over l and using the constraint (9b),

L∑
l=1

ρ
(n)
kl =

L∑
l=1

1

ηk

∑
ij

α
(n)
ijkl ⇐⇒

1 =
1

ηk

∑
ij

L∑
l=1

α
(n)
ijkl ⇐⇒

ηk =
∑
ij

L∑
l=1

α
(n)
ijkl =

∑
ij

α
(n)
ijk (13)

In the last equality we have used the definition α(n)
ijk =

∑L
l=1 α

(n)
ijkl (section 4.2 in [1]). By using (13) in (12), we obtain eq.

(20) in [1] as

ρ
(n)
kl =

∑
ij α

(n)
ijkl∑

ij α
(n)
ijk

, k = 1, . . . ,K. (14)

4. Parameter variations
Here, we provide further analysis of the parameters used in our approach. We investigate the impact of varying the number

of spatial components K (fig. 1) and outlier ratio parameter π0 (fig. 2). Our results remain stable to parameter perturbations.
Additionally, our method achieves a consistent improvement over JRMPS [2] in both accuracy and robustness, independent
of parameter settings.
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Figure 1. Analysis of the number of spatial components K. We show the average inlier rotation error (left) and failure rate (right) for our
color-based method (red) and the baseline JRMPS (green).

0.0001 0.0005 0.002 0.01 0.05 0.2

Outlier ratio, π
0

0.008

0.009

0.01

0.011

0.012

0.013

0.014

A
v
e

ra
g

e
 r

o
ta

ti
o

n
 e

rr
o

r

Inlier Error Plot

Our

JRMPS

0.0001 0.0005 0.002 0.01 0.05 0.2

Outlier ratio, π
0

0

1

2

3

4

5

6

N
u

m
b

e
r 

o
f 

F
a

ilu
re

s
 O

c
c
u

rr
e

d

Failure Occurences Plot

Our

JRMPS

Figure 2. Analysis of the outlier ratio parameter π0. We show the average inlier rotation error (left) and failure rate (right) for our color-
based method (red) and the baseline JRMPS (green).
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